Category简介
Category能够添加额外的方法到已有的类中(甚至你无法访问源码的类,Framework或者第三方SDK)。后加入的方法会被子类继承,并且在运行时Category中的方法和原有类的方法是没有区别的,就仿佛原来就在那一样。
Category通常可以用来:
- 分割一个复杂类的不同方法在不同的文件中。
- 声明私有方法
热身
Struct声明与初始化
热身代码在这里
- (void)testStrangeInit{
static struct {
int intvalue;
char charValue;
} testStruct {
1024,
'c'
};
XCTAssertEqual(testStruct.intvalue, 1024);
XCTAssertEqual(testStruct.charValue, 'c');
}
class与object的关系
见之前文章class与object的关系
Category注意事项
- 你可以在Category中添加类 或者 成员方法。也可以添加
@Property
,但是Property在Category中是失效的,编译器无法帮你生成getter和setter,也无法添加property对应的成员变量。 可以用@dynamic
,然后自己处理变量,getter和setter - Category本身新加方法可能会和已有类成员函数(父类成员函数),或者其他Category中添加的方法命名冲突, 到底哪个一个函数在运行时生效,是无法确认的,所以用Category增强Framework时,要格外注意.
- Category中的方法,和已有方法是替代关系,苹果非常不推荐用Category来复写方法, 理由一是没法调用被覆盖方法原有super实现,理由二是哪个方法最后生效无法确定。参考文章
Category定义
struct category_t {
const char *name;
classref_t cls;
struct method_list_t *instanceMethods;
struct method_list_t *classMethods;
struct protocol_list_t *protocols;
struct property_list_t *instanceProperties;
// Fields below this point are not always present on disk.
struct property_list_t *_classProperties;
method_list_t *methodsForMeta(bool isMeta) {
if (isMeta) return classMethods;
else return instanceMethods;
}
property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
};
typedef struct objc_category *Category;
struct objc_category {
char *category_name OBJC2_UNAVAILABLE;
char *class_name OBJC2_UNAVAILABLE;
struct objc_method_list *instance_methods OBJC2_UNAVAILABLE;
struct objc_method_list *class_methods OBJC2_UNAVAILABLE;
struct objc_protocol_list *protocols OBJC2_UNAVAILABLE;
}
主要看出来Category有名字,所属的类,2个方法列表和协议列表
clang重写
本文涉及代码主要在这里
翻译结果
// @interface PrisonCat(CatCategory)<Catify>
// @property(nonatomic, assign)BOOL useless;
// - (void)helloThere;
// + (void)helloWorld;
/* @end */
// @implementation PrisonCat(CatCategory)
// @dynamic useless;
static void _I_PrisonCat_CatCategory_helloThere(PrisonCat * self, SEL _cmd) {
printf("nice there\n");
}
static void _C_PrisonCat_CatCategory_helloWorld(Class self, SEL _cmd) {
printf("nice world\n");
}
static void _I_PrisonCat_CatCategory_becomeACat(PrisonCat * self, SEL _cmd) {
printf("pretend to be a cat\n");
}
// @end
可以看到@property和@dynamic在Clang重写之后,都被注视掉了
其中_I_PrisonCat_CatCategory_helloThere
封装成method_list结构体_OBJC_$_CATEGORY_INSTANCE_METHODS_PrisonCat_$_CatCategory
, 协议
相应的_C_PrisonCat_CatCategory_helloWorld
封装成method_list结构体_OBJC_$_CATEGORY_CLASS_METHODS_PrisonCat_$_CatCategory
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[2];
} _OBJC_$_CATEGORY_INSTANCE_METHODS_PrisonCat_$_CatCategory __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
2,
{{(struct objc_selector *)"helloThere", "v16@0:8", (void *)_I_PrisonCat_CatCategory_helloThere},
{(struct objc_selector *)"becomeACat", "v16@0:8", (void *)_I_PrisonCat_CatCategory_becomeACat}}
};
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_CLASS_METHODS_PrisonCat_$_CatCategory __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"helloWorld", "v16@0:8", (void *)_C_PrisonCat_CatCategory_helloWorld}}{ % endraw %}
};
同理应该能够看懂protocol_list和prop_list
static struct /*_protocol_list_t*/ {
long protocol_count; // Note, this is 32/64 bit
struct _protocol_t *super_protocols[1];
} _OBJC_CATEGORY_PROTOCOLS_$_PrisonCat_$_CatCategory __attribute__ ((used, section ("__DATA,__objc_const"))) = {
1,
&_OBJC_PROTOCOL_Catify
};
static struct /*_prop_list_t*/ {
unsigned int entsize; // sizeof(struct _prop_t)
unsigned int count_of_properties;
struct _prop_t prop_list[1];
} _OBJC_$_PROP_LIST_PrisonCat_$_CatCategory __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_prop_t),
1,
{% raw %}{{"useless","Tc,D,N"}}
};
加载组装
接下来我们看看编译器如何准备Category信息
#pragma section(".objc_inithooks$B", long, read, write)
__declspec(allocate(".objc_inithooks$B")) static void *OBJC_CATEGORY_SETUP[] = {
(void *)&OBJC_CATEGORY_SETUP_$_PrisonCat_$_CatCategory,
};
static void OBJC_CATEGORY_SETUP_$_PrisonCat_$_CatCategory(void ) {
_OBJC_$_CATEGORY_PrisonCat_$_CatCategory.cls = &OBJC_CLASS_$_PrisonCat;
}
static struct _category_t _OBJC_$_CATEGORY_PrisonCat_$_CatCategory __attribute__ ((used, section ("__DATA,__objc_const"))) =
{
"PrisonCat",
0, // &OBJC_CLASS_$_PrisonCat,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_PrisonCat_$_CatCategory,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_CLASS_METHODS_PrisonCat_$_CatCategory,
(const struct _protocol_list_t *)&_OBJC_CATEGORY_PROTOCOLS_$_PrisonCat_$_CatCategory,
(const struct _prop_list_t *)&_OBJC_$_PROP_LIST_PrisonCat_$_CatCategory,
};
// 最终如下:
static struct _category_t *L_OBJC_LABEL_CATEGORY_$ [1] __attribute__((used, section ("__DATA, __objc_catlist,regular,no_dead_strip")))= {
&_OBJC_$_CATEGORY_PrisonCat_$_CatCategory,
};
从上到下,可以看到objc_inithooks启动初始化回调中,会将Category中的cls指向对应的类。然后完成_OBJC_$_CATEGORY_PrisonCat_$_CatCategory
的组装,最终生成一L_OBJC_LABEL_CATEGORY_$[1]
, 放在__DATA区域, 作为编译器,就只能帮你到这了。
Category与Class对比
组装结果对比
class 在L_OBJC_LABEL_CLASS_$[1]
变量中,并拥有__objc_classlist
属性
category 在L_OBJC_LABEL_CATEGORY_$[1]
, 并拥有__objc_catlist
属性
static struct _class_t *L_OBJC_LABEL_CLASS_$ [1] __attribute__((used, section ("__DATA, __objc_classlist,regular,no_dead_strip")))= {
&OBJC_CLASS_$_PrisonCat,
};
static struct _category_t *L_OBJC_LABEL_CATEGORY_$ [1] __attribute__((used, section ("__DATA, __objc_catlist,regular,no_dead_strip")))= {
&_OBJC_$_CATEGORY_PrisonCat_$_CatCategory,
};
源码解析
第1步,libobjc.A.dylib在加载时,首先调用_objc_init
, 然后调用map_images, map_images_nolock, _read_images
/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time
**********************************************************************/
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
第2.0步 _read_images方法中
调用 realizeClass生成元类与类的信息,
// Realize non-lazy classes (for +load methods and static instances)
for (EACH_HEADER) {
classref_t *classlist =
_getObjc2NonlazyClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
if (!cls) continue;
// hack for class __ARCLite__, which didn't get this above
#if TARGET_OS_SIMULATOR
if (cls->cache._buckets == (void*)&_objc_empty_cache &&
(cls->cache._mask || cls->cache._occupied))
{
cls->cache._mask = 0;
cls->cache._occupied = 0;
}
if (cls->ISA()->cache._buckets == (void*)&_objc_empty_cache &&
(cls->ISA()->cache._mask || cls->ISA()->cache._occupied))
{
cls->ISA()->cache._mask = 0;
cls->ISA()->cache._occupied = 0;
}
#endif
realizeClass(cls);
}
}
第2.1步```_read_images调用
addUnattachedCategoryForClass方法,添加Catetory信息和class到一个hashtable(
NXMapTable`)中
// Discover categories.
for (EACH_HEADER) {
category_t **catlist =
_getObjc2CategoryList(hi, &count);
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
for (i = 0; i < count; i++) {
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls);
if (!cls) {
// Category's target class is missing (probably weak-linked).
// Disavow any knowledge of this category.
catlist[i] = nil;
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING category \?\?\?(%s) %p with "
"missing weak-linked target class",
cat->name, cat);
}
continue;
}
// Process this category.
// First, register the category with its target class.
// Then, rebuild the class's method lists (etc) if
// the class is realized.
bool classExists = NO;
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
addUnattachedCategoryForClass(cat, cls, hi);
if (cls->isRealized()) {
remethodizeClass(cls);
classExists = YES;
}
if (PrintConnecting) {
_objc_inform("CLASS: found category -%s(%s) %s",
cls->nameForLogging(), cat->name,
classExists ? "on existing class" : "");
}
}
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
addUnattachedCategoryForClass(cat, cls->ISA(), hi);
if (cls->ISA()->isRealized()) {
remethodizeClass(cls->ISA());
}
if (PrintConnecting) {
_objc_inform("CLASS: found category +%s(%s)",
cls->nameForLogging(), cat->name);
}
}
}
}
ts.log("IMAGE TIMES: discover categories");
// Category discovery MUST BE LAST to avoid potential races
// when other threads call the new category code before
// this thread finishes its fixups.
第2.2步remethodizeClass
方法,拿到上述category信息, 并调用attachCategories
更新类相关信息,刷新方法缓存。
/***********************************************************************
* remethodizeClass
* Attach outstanding categories to an existing class.
* Fixes up cls's method list, protocol list, and property list.
* Updates method caches for cls and its subclasses.
* Locking: runtimeLock must be held by the caller
**********************************************************************/
static void remethodizeClass(Class cls)
{
category_list *cats;
bool isMeta;
runtimeLock.assertWriting();
isMeta = cls->isMetaClass();
// Re-methodizing: check for more categories
if ((cats = unattachedCategoriesForClass(cls, false/*not realizing*/))) {
if (PrintConnecting) {
_objc_inform("CLASS: attaching categories to class '%s' %s",
cls->nameForLogging(), isMeta ? "(meta)" : "");
}
attachCategories(cls, cats, true /*flush caches*/);
free(cats);
}
}
第3步通过entry.cat->methodsForMeta(isMeta);
来返回实例方法instanceMethods或classMethods
,properties与上述类似。
最后通过attachLists将methods, properties, protocols更新到对应的类,或者元类的结构体中。
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
static void
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
if (!cats) return;
if (PrintReplacedMethods) printReplacements(cls, cats);
bool isMeta = cls->isMetaClass();
// fixme rearrange to remove these intermediate allocations
method_list_t **mlists = (method_list_t **)
malloc(cats->count * sizeof(*mlists));
property_list_t **proplists = (property_list_t **)
malloc(cats->count * sizeof(*proplists));
protocol_list_t **protolists = (protocol_list_t **)
malloc(cats->count * sizeof(*protolists));
// Count backwards through cats to get newest categories first
int mcount = 0;
int propcount = 0;
int protocount = 0;
int i = cats->count;
bool fromBundle = NO;
while (i--) {
auto& entry = cats->list[i];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
mlists[mcount++] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
proplists[propcount++] = proplist;
}
protocol_list_t *protolist = entry.cat->protocols;
if (protolist) {
protolists[protocount++] = protolist;
}
}
auto rw = cls->data();
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
rw->methods.attachLists(mlists, mcount);
free(mlists);
if (flush_caches && mcount > 0) flushCaches(cls);
rw->properties.attachLists(proplists, propcount);
free(proplists);
rw->protocols.attachLists(protolists, protocount);
free(protolists);
}
Category vs. Extension
Extension看起来和Category差不多,但其实Extension是完全不一样的东西。和Category不同,Extension必须有源码才能够可用,Extension就是类本身, 通常用来改变变量@property从readonly->readwrite, 还可以把不想公开的方法放入Extensions中。
总结
Extension编译器处理,组装到Class的定义中,在运行初始化时,生成类与元类。
Category由编译器处理,组装到Category的定义中,在运行初始化时,动态添加到类和元类中
更多
http://blog.leichunfeng.com/blog/2015/05/18/objective-c-category-implementation-principle